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The game of Matching Pennies (MP), a simplified version of the more popular Rock, Papers, Scissors,
schematically represents competitions between organisms with incentives to predict each other’s
behavior. Optimal performance in iterated MP competitions involves the production of random choice
patterns and the detection of nonrandomness in the opponent’s choices. The purpose of this study was
to replicate systematic deviations from optimal choice observed in humans when playing MP, and to
establish whether suboptimal performance was better described by a modified linear learning model or
by a more cognitively sophisticated reinforcement-tracking model. Two pairs of pigeons played iterated
MP competitions; payoffs for successful choices (e.g., “Rock’ vs. “*Scissors’’) varied within experimental
sessions and across experimental conditions, and were signaled by visual stimuli. Pigeons’ behavior
adjusted to payoff matrices; divergences from optimal play were analogous to those usually
demonstrated by humans, except for the tendency of pigeons to persist on prior choices. Suboptimal
play was well characterized by a linear learning model of the kind widely used to describe human
performance. This linear learning model may thus serve as default account of competitive performance
against which the imputation of cognitively sophisticated processes can be evaluated.
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Psychology, economics, and ethology are
concerned with how human and nonhuman
organisms choose between alternatives in the
context of scarce resources. Choices made by
one organism are often linked to those made
by others, such that obtaining a resource
depends on what others do. In competitive
scenarios—where one’s gain is another’s
loss—the chances of obtaining a preferred
resource are greatly enhanced if an oppo-
nent’s choices are anticipated. Consequently,
natural selection condemns predictable behav-
ior and favors the detection of nonrandom-
ness among competitors (Miller, 1997). In
predator—prey encounters, for instance, un-
predictable motor behavior is afforded by
inheritable morphological symmetries and
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sensory-motor systems that allow fast changes
of speed and direction (Driver & Humpbhries,
1988). It is unclear, however, the extent to
which individual animals may learn unpredict-
able behaviors by repeated exposure to pred-
ator/prey-associated stimuli, and if such a
learning process is general or niche specific.
Mixed strategy games generically describe
the kind of competitive situations considered
here, where unpredictability is encouraged
(Camerer, 2003). This class of interaction is
characteristic of the relation between cheetahs
and gazelles, goalkeepers and penalty-kickers,
cops and robbers, and any other pair of agents
where a pursuer must predict the actions of an
evasive opponent. Representing competitions
as mixed strategy games permits the specifica-
tion of normative (Nash) equilibria in the
distribution of choices made by two oppo-
nents. Consider the Rock, Paper, Scissors game.
If a player chose to always play one alternative
(rock, paper, or scissors), she would easily be
defeated by an opponent who always made the
complementary move (paper, scissors, or
rock). Thus, it is not optimal to pick a single
alternative unless the opponent picks a single
alternative. It is easy to see how, if both players
understand the rules of the game and maxi-
mize their chances to win, their choice strategy
will converge at selecting any alternative
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randomly with p = 1/3; any deviation from this
strategy could be exploited by the opponent
and reduce one’s chances to win. When each
player chooses between rock, paper, and
scissors with p = 1/3 the Nash equilibrium of
the game is achieved.

When investigating actual behavior in mixed
strategy games, there are two important
considerations regarding Nash equilibria.
First, perfect randomization is not necessary
for optimal performance—as long as the
opponent cannot predict a player’s move, the
player’s chances to win are as high as they can
be. Although randomization is optimal regard-
less of the opponent’s competence (and thus
will serve here as criterion of optimality),
mixed strategy games encourage only unpre-
dictable behavior. Second, Nash equilibria
specify what players would learn if they were
maximizing payoffs, but not how they would
learn it. In this paper, we are concerned with
whether Nash equilibria are attained by real
players in a mixed strategy game, and how they
learn to attain it.

Experimental studies on how individual
living organisms actually learn mixed strategies
have been focused on human players (for a
review, see Camerer, 2003), with only a few
studies on other species, mostly primates
(Dorris & Glimcher, 2004; Flood, Lenden-
mann & Rapoport, 1983; Lee, Conroy,
McGreevy &  Barraclough, 2004; Lee,
McGreevy, & Barraclough, 2005). Research
on human randomization suggests systematic
suboptimal biases, but quasirandom sequences
may be learned (Neuringer, 1986). Nonhu-
man organisms have also shown learned
randomization (Machado, 1989). Although
the demands of repeated mixed strategy games
may enhance randomization in humans (Ra-
poport & Budescu, 1992), subjects with exten-
sive training systematically fail to produce
serially independent choice sequences: Hu-
mans tend to overalternate (Brown & Ro-
senthal, 1990; Towse & Maclachlan, 1999),
whereas rhesus monkeys (Macaca mulatia)
tend to perseverate (Lee et al.,, 2004). The
capacity to detect nonrandom patterns in
humans appears to be limited by memory
and other computational constraints (Falk &
Konold, 1997); comparable data are not yet
available from nonhuman subjects. Without a
wider base of studies involving nonhuman
subjects, it is difficult to establish whether
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Fig. 1. Schematic representation of MP competition.

Each of two players (Same and Different) have a choice
between heads and tails. Samewins if both players make the
same choice; Differentwins if players make different choices.

sophisticated cognitive mechanisms, such as
top-down executive functions, are necessary
for the acquisition of novel and optimal
competitive behavior.

We examined how pigeons (Columba livia)
learn to compete against a conspecific in a
mixed strategy game known as Matching
Pennies (MP), a two-choice version of Rock,
Paper, Scissors. Matching Pennies involves two
players, each with a penny that can be played
heads or tails and an assigned role as Same or
Different. If both players play the same side of
the coin, Same keeps both coins; if each player
plays a different side of the coin, Different keeps
both coins (Figure 1). As in Rock, Paper,
Scissors, optimal play in iterated MP competi-
tions involves producing unpredictable se-
quences of choices and detecting nonrandom-
ness in the opponent’s choices. This is also the
Nash equilibrium of MP: Against a choice-
randomizing opponent, the best strategy is to
randomize one’s own choices.

We evaluated performance of pigeons in MP
against two predictions derived from optimal-
ity: (1) choices are serially independent, and
(2) in each game, choices stabilize at the Nash
equilibrium. Then, we compared two learning
models as accounts for the performance of
pigeons and their deviations from optimality.
Finally, we validated the best learning model
by using its parameter estimates to simulate
MP performance.
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METHOD

Subjects

Four adult pigeons (Columba livia) were
housed individually in a room with a 12:12-hr
day: night cycle, with dawn at 0600 hr. They
had free access to water and grit in their home
cages. The pigeons’ running weights were
based on 80% of their free-feeding weights.
Each pigeon was weighed immediately prior to
an experimental session and was excluded
from a session if its weight exceeded 8% of its
running weight. When required, a supplemen-
tary feeding of ACE-HI pigeon pellets (Star
Milling Co.) was given at the end of each day,
at least 12 hr before experimental sessions
were conducted. Supplementary feeding
amounts were equal to 50% of the average
amount fed over the last 15 days, plus 50% of
the current deviation from target running
weight.

Apparatus

Experimental sessions were conducted in
four modular test chambers (305 mm long,
241 mm wide, and 292 mm high), each
enclosed in a sound- and light-attenuating
box equipped with a ventilating fan. The floor
consisted of thin metal bars positioned above a
catch pan. The front and rear walls and the
ceiling of the experimental chambers were
made of clear plastic, and the front wall was
hinged and functioned as a door to the
chamber. One of the two aluminum side
panels served as a test panel. The test panel
contained three plastic transparent response
keys (25 mm in diameter) aligned horizontal-
ly, 70 mm from the ceiling. The keys could be
illuminated by white, green and red light
emitted from two diodes located behind the
keys. A rectangular opening (52 mm wide,
57 mm high) located 20 mm above the floor
and centered on the test panel could provide
access to milo (grain sorghum) when a grain
hopper behind the panel was activated. A
house light was mounted 12 mm from the
ceiling on the side wall opposite the test panel.
The ventilation fan mounted on the rear wall
of the sound-attenuating chamber provided
masking noise of 60 dB. Experimental events
were arranged via a Med-PC® interface con-
nected to a PC controlled by Med-PC IV®
software.

171

000

Peck ;

000

Peck{ J,
€00 00<
\ \
| Food/BO | | BO/Food |

‘ ¢
ITI

Fig. 2. Choice procedure for unbiasing protocol and
MP game. A peck on the center key (illuminated according
to block or role) illuminated both side keys. A peck on a
side key constituted a choice (left = heads, right = tails); it
changed key color to red and extinguished the opposite
side key before delivering food or a blackout.

Procedure

Unbiasing protocol. Before starting the ex-
periment proper, we sought to reduce any bias
toward pecking either choice key when illumi-
nated with colors used during the experiment.
Each of six daily sessions consisted of one
block of consecutive ‘‘green’ trials, and one
block of consecutive ‘‘white’” trials, presented
in random order. Each trial—diagrammed in
Figure 2—began with the darkening of the
house light and the illumination of the middle
key with the assigned color (green or white). A
key peck extinguished the middle key and
illuminated both choice keys with the assigned
color. A key peck on either choice key
changed its color to red and extinguished
the opposite key. After a 2-s delay, the red-
colored key was also extinguished and food—
which served as reinforcer—was presented
probabilistically for 2.5 s. The probability of
reinforcement of each choice was approxi-
mately the fraction of total pecks made on the
opposite key. A 2.5-s blackout was presented
when reinforcement was absent. The house
light was illuminated between trials for 2.5 s.
“Color” blocks alternated after 30 feedings;
key colors were not related to reinforcement
probability. Sessions ended after 60 feedings
or 90 min, whichever happened first.
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Table 1

Number of sessions and duration of reinforcers in each game.

Duration of Reinforcers

Number of Sessions Pigeon A Pigeon B
Game Pigeons Al, Bl Pigeons A2, B2 Heads Tails Heads Tails
1 21 20 short short short short
2 32 35 short LONG short short
3 33 47 short LONG short LONG
4 21 29 LONG short LONG short

Note. “‘Short’” reinforcers were 2 or 2.5's of access to food. “LONG’ reinforcers were 7.5 s of access to food.

Unreinforced choices were followed by 2.5-s blackout.

Matching Pennies (MP) game. After complet-
ing the unbiasing protocol, pigeons were
paired without regard to preexperimental
performance, and played a series of MP games
exclusively against each other. Choices in
these games were arranged similarly to those
in the unbiasing protocol (Figure 2). Sessions
were divided in two parts. During the first half
of each session, one pigeon played the role of
Same, where reinforcers were delivered only
after the subject pecked on the same side as
its opponent. Meanwhile, the other pigeon
played Different, and reinforcers were delivered
only after it pecked on the opposite side than
its opponent did. Roles were assigned ran-
domly at the beginning of the session and were
signaled by the color of both keys. The size of
each reinforcer—the payoff—was constant
within sessions, but varied across experimental
conditons, ranging between 2 and 7 s of access
to food. The first half of each session ended
once any 1 of the 2 pigeons had accumulated
at least 80 s of access to food over the session.
During the second half of the session, roles
were reversed. The second half of the session
ended when 1 of the 2 pigeons had accumu-
lated at least 160 s of food access over the
session.

Before the beginning of each trial, the
house light was turned on for 10 to 12 's. The
variability in intertrial interval was used to
synchronize the beginning of each trial across
pigeons. Each trial began with the extinction
of the house light simultaneously with the
illumination of the middle key on the
response panel. The middle key was illuminat-
ed green, when playing Same, or white, when
playing Different. A peck on the middle key
extinguished it and illuminated both left and
right choice keys (heads and tails, respectively)

according to role. A peck on either choice key
turned the pecked key red and extinguished
the key not pecked. The chosen key remained
red until 2 s after the opponent made its
choice, then it was turned off and the
reinforcer was delivered if it was due; if it was
not due, a 2.5-s blackout was presented
instead. If a choice was not made within 10 s
from the beginning of the trial, the key lights
were turned off, the choice for that round was
marked as a forfeit, and a 2.5-s blackout
ensued. When the opponent forfeited, either
choice was reinforced. Forfeits, which repre-
sented 1% of the trials, were excluded from
analysis and thus heads and tails choices added
to 100%. Reinforcement and blackouts
marked the end of each trial.

Payoffs were varied from game to game by
changing the duration of reinforcers. Table 1
indicates the number of sessions played and
the duration of reinforcers in each game. In
Game 1, the durations of heads and tails
reinforcers were identical; in Game 2, the
duration of tails reinforcers was increased only
for one pigeon (A) in each pair; in Game 3,
the duration of tails reinforcers was increased
also for pigeon B in each pair; in Game 4, the
duration of tails and heads reinforcers were
switched for both pigeons in each pair.
Unreinforced choices were always followed by
a 2.5-s chamber blackout. Note that assign-
ment of pigeons as A or B was not related to
role assignment: In each session, both pigeons,
A and B, played Same and Different.

RESULTS
Serial Independence and Choice Perseveration

Optimal choices in iterated Matching Pen-
nies games are unpredictable, and thus should
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Fig. 3. Probability of choosing the same alternative 1
to 10 trials in the future, in each of the four games.
Probability of repeating a choice was calculated as y =
p(heads in lag Olheads in lag x) + p(tails in lag Oltails in lag
x). Fitted curves trace exponential decay functions of the
form y = yy + ae *, with y, and « varying across games.
Fitting was conducted using SigmaPlot 2004 for
Windows 9.01.

be independent of prior choices. To evaluate
this expectation, we examined the probability
of repeating a choice in future trials. In an
unpredictable sequence of choices, the prob-
ability of repeating the same choice after any
number of trials should be .5. To the extent
that this probability is above .5, it demonstrates
perseveration in choice; to the extent that it is
below .5, it demonstrates overalternation. This
measure is insensitive to preference towards an
alternative: If a player prefers playing heads
over tails, the probability of repeating a heads
choice would be over .5, but the probability of
repeating a tails choice would be below .5,
averaging at .5 if there are no perserveration
or overalternation trends.

Figure 3 shows the probability that choice in
any trial ¢ would be repeated in trial ¢+ x, with
xranging between 1 and 10. The probability of
repeating a choice was above .5 in all games,
regardless of lag, which indicates a systematic
positive influence of past choices on current
choices in pigeons. This influence appears to
decay exponentially over time, faster in Games
1, 2, and 3 than in Game 4, as shown by the
fitted curves in Figure 3. We may therefore
represent choice on any given trial as a
function of an exponentially weighted moving
average (EWMA) of prior choices,

p’t-{—] el OCCt + (1 - O()p/t, O <a< 1

(1)
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where the p', is the predicted probability of a
choice in trial « For clarity, it will be assumed
throughout this paper that the variable of
interest is the probability of heads choices; our
inferences would apply also to tails choices,
because their probability complements the
probability of heads choices. Thus, p', is the
probability of heads in trial  C,is 1 if heads
was chosen in {, or zero if tails was chosen in
a, the only free parameter, is the rate of decay
of the moving average (I = no decay, 0 =
immediate decay). To illustrate how o was
estimated, consider the following example:
Suppose a choice of heads in trial 99 was
expected with p'g9 = .8, but the actual choice
was tails (Cyg = 0). If o = .5, the expected
choice of heads for trial 100 would be p'190 =
HX0+5X.8=4ifa=.1,p10=.1X0+
.9 X .8 = .72. Higher values of o indicate that
current choices are more predictive of subse-
quent choices. Fitting o to each pigeon’s
choices across all four games, using the
method of maximum likelihood', yielded a
median of .074, ranging between .039 and .103
(see EWMA in Table 2). Thus, the typical in-
fluence of a choice on the subsequent choice
was systematic but relatively small, and it de-
cayed to about half (3.7%) between ¢+ 1 and ¢
+10 (e, (1 — a)'7 ' = 0.50(1 — o)’ 71y,

Nash Equilibrium and Sensitivity to Own Payoffs

The second prediction from optimal iterat-
ed play of Matching Pennies is that choices
stabilize near the Nash equilibrium. The Nash
equilibrium is the probability of choosing
heads such that neither player has an incentive
to change how its own choices are allocated.
The incentive to change choice distribution is
absent only when the expected utility (£U)
obtained from choosing heads or tails is the
same. To estimate the stable allocation of
choices predicted by Nash equilibrium, it may
be assumed that the EU of choosing an
alternative is the product of the utility of
reinforcement (which we expected to covary
positively with duration of reinforcers) and the

! Maximum likelihood was computed by varying free
parameters to fit predictions (p';) to data (C,) on each
trial. Fitting was conducted by maximizing

> log[Gp, + (1= G)(1 — /)]

which yields the log-likelihood of the model, the log
probability of the data given the best estimates of model
parameters.

(F1)
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Table 2

Parameters of EWMA (Eq. 1),
SLLp, and WRM.

Parameter Al A2 Bl B2
EWMA
o .039 .103 .079 .069
SLLp
o 110 241 175 .041
Y .032 .099 .020 .010
AE 077 201 .090 011
LLR* 111.1 265.4 130.6 187.7
WRM
oLar 126 .119 .005 .017
s .308 404 .632 .666
Preaps 0.748 1.16 1.12 1.18
LLR* 101.6 135.0 75.3 133.2

* LLRs (log-likelihood ratios) are computed as L(model)
— L(EWMA), where L(Y) is the log-likelihood of model Y.

probability of reinforcement. Probability of
reinforcement depended on the opponents’
choices and on role being played: For exam-
ple, the probability that a heads choice will be
reinforced while playing Sameis the probability
that the opponent will also choose heads.
Thus, we can express the EU of choosing heads
while playing Same as EUs(H) = ppUs(H),
where pp, is the probability that the opponent
(who is playing Different) will choose heads,
and Ug(H) is the utility of a reinforcer
obtained for choosing heads. The subscripts
in this equation indicate the player to whom
each variable is ascribed: The wutility of
reinforcement and the expected utility corre-
spond to one player (S in our example),
whereas the probability of choosing heads
correspond to the opponent (D in our
example). At the Nash equilibrium, when
EUs of playing heads and tails are equal, we
may solve for the opponent’s p, and this value
may be contrasted against data to verify that
choices converged at the Nash equilibrium. To
solve for p in each role, a more general
algebraic statement of the Nash equilibria
must be made:

EUp(H)=EUp(T)=(1—ps) Up(H)= psUp(T)

EUs(H)=EUs(T)=ppUs(H)=(1—pp) Us(T) 2)
The first line of Equation 2 may be read as
“while playing Different, the expected utility of
choosing heads or tails is the same, which
means that the probability that the opponent
will choose tails (1 — pg), times the utility of a
reinforced heads choice, is equal to the

FEDERICO SANABRIA and ERIC THRAILKILL

probability that the opponent will choose
heads times the utility of a reinforced tails
choice.” The second line may be read analo-
gously. From these equations pgand p, may be
solved:

_ Up(H)
ps = Up(T) + Up(H)

(3)

_ Us(H)
pp = 1 — US(T)\—&- Us(H)

To determine whether choices converged
on Nash equilibria, or if there were any
systematic deviations from this normative
prediction, ps, pp and utilities for each pigeon
were fitted to the proportions of heads choices
during the last 5 sessions of each game (i.e.,
after the pigeons had at least 15 sessions of
experience). To the extent that pg and pp
successfully tracked changes in heads choices,
Nash equilibrium would be validated as a
behavioral predictor. There were two con-
straints to the estimation of utilities in the
Nash equilibrium model: (1) Utilities did not
change across roles or games within the same
pigeon—for example, the utility of a 2.5-s
reinforcer did not change for a pigeon
regardless of whether it was playing Same,
Different, Game 1, or Game 4; and (2) utilities
did not covary negatively with duration of
reinforcement within the same pigeon—for
example, the utility of a 2.5-s reinforcer was
equal to or less than the utility of a 7.5
reinforcer. This implied two free parameters
in the Nash equilibrium model fitted to each
pigeon, one for the utility of each of the two
reinforcer durations used. A third parameter
was included to account for payoffindepen-
dent biases in choice—for example, Us(H) was
the utility of the reinforcer of successful heads
choices while playing Same, plus the ‘“‘utility”
of choosing heads.

Figure 4 shows the proportion of heads
choices in each role (thin and dotted lines)
and estimates of pg (thick gray bars) and pp
(thick black bars) across games. From simply
looking at the thick bars and comparing them
to the terminal distribution of choices in each
game, it is difficult to determine if the Nash
equilibria correctly predicted where choices
would converge—compare, for instance, data
from pigeon Al in Game 1, where the Nash
equilibria fared well, with data from pigeon B2
in Game 4, where they did not. In some games
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Fig. 4. Proportion of heads choices across MP games. Pigeon Al played against B, and pigeon A2 played against B2.
Horizontal bars indicate expected proportion of heads choices according to a fitted Nash Equilibrium model

(Equation 3). The @ symbol represents the successful choice with larger reward (top = heads, bottom =

tails).

Deviations from horizontal bars towards @ are indicative of own-payoffs effect.

it is not even clear that choices stabilized after
training (e.g., pigeon A2 in Game 4). In almost
all cases, however, whether heads was chosen
more often while playing one role or another
coincided with predictions from the Nash
equilibria. A more stringent assessment may
be based on two important features of choices
predicted by the Nash equilibria that are
revealed by Equation 3.

First, note the difference in subscripts
between the left and right hand sides of
Equation 3: they indicate that optimal choices
are not determined by one’s own payoffs, but
by the opponent’s. This implies that if payoffs
are larger for tails relative to heads, it is the
opponent who should adjust her choices,
choosing heads less often if playing Same, or
more often if playing Different. Here is an
intuitive account of why this should happen: If
pigeon Al plays Different and its payoft for
successful tails choices increases (as in Game
2), it would be motivated to choose heads less
often—but so would be its opponent, B1, who
is playing Same. This would discourage Al from

choosing heads less often than tails, but only
while B1 makes it less likely that A1 would win
if it chose tails. Thus, a change in Al’s payoffs
should be reflected in Bl’s behavior. Knowl-
edge of the opponent’s payoff, which our
pigeons could not have, should not be
necessary—feedback via reinforcement should
suffice: If Al chooses tails more often, Bl
would increase its rate of reinforcement by
choosing tails too, which would discourage Al
from playing tails. Furthermore, unequal
payoffs should affect the opponent’s choice
in opposite directions depending on whether
it is playing Same or Different—tracking the
richer alternative in the former, avoiding it in
the latter.

The effect of payoff changes on an oppo-
nent’s choices expected from the Nash equli-
brium is visible in the thick bars of Figure 4:
Nash equilibria changed between games only
when payoffs were changed for the opponent.
In Game 2, when reinforcer duration for tails
choices was increased for pigeons Al and A2,
the Nash equilibria predicted a decrease in pg
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and an increase in pp in pigeons Bl and B2. A
similar change was predicted for pigeons Al
and A2 in Game 3, when reinforcer duration
for tails choices was increased for pigeons Bl
and B2. In Game 4, when reinforcer duration
for heads choices was increased and for
successful tails choices was decreased, pg was
predicted to increase and pp to decrease
relative to prior games. Actual choices roughly
followed these predictions. In Game 2, choices
diverged less across roles for pigeons that
experienced unequal payoffs (Al and A2)
than for their opponents (Bl and B2); once
unequal payoffs were presented to Bl and B2
in Game 3, their opponents’ choices also
diverged across roles. In Game 4, the simulta-
neous reversal of reinforcer duration for both
pigeons either reversed choices across roles
(pigeons Al and A2) or at least reduced their
difference (pigeons Bl and B2). Thus, consis-
tent with the Nash equilibria, changes in
choices between games were sensitive to
changes in opponent’s payoffs. Moreover,
rapid changes in choice with changes in role
demonstrated that game strategy was con-
trolled by visual stimuli that cued role.

The second feature of choice at the Nash
equilibrium revealed by Equation 3 is that,
because utilities did not change across roles
within the same pigeon (our first constraint
for estimating utilities), pg = 1 — pp, for any
pigeon. This is visible in Figure 4: Nash
equilibria for both roles within each game
were always equidistant to .5 and thus added to
1. Relative to these predictions, however,
choices in each role at the end of game appear
to be biased towards the richer alternative
(““@”’ symbols in Figure 4) in most games with
unequal payoffs; the opposite bias was never
observed. The sensitivity of pigeons’ choices to
their own payoffs, however intuitive, was not
expected from the Nash equilibria.

The Nash equilibria provided normative
predictions about asymptotic choice distribu-
tion in MP competitions. These predictions
were partially validated by the pigeons’ behav-
ior. Consistent with predictions, choices were
sensitive to the payoffs of the opponent;
however, in conflict with predictions, choices
were also sensitive to each pigeon’s own
payoffs. These molar characteristics of ob-
served choice may now serve to evaluate the
global output of models of trial-by-trial perfor-
mance.
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Learning Models

Learning processes may be characterized by
algorithms that specify trial-by-trial changes in
performance as a function of various inputs
from the organism and its environment
(Sutton & Barto, 1998). An algorithm that
accurately represents the learning process of
pigeons in MP must be consistent with the data
presented here: It must approximate the Nash
equilibrium and be sensitive to role cues, but it
must also display choice perseveration and
oversensitivity to one’s own payoffs. We con-
sidered two candidate algorithms to describe
MP performance: A Stochastic Linear Learning
model that incorporates choice perseveration
(SLLp), and a Weighted Reinforcement Matching
(WRM) model. Choice perseveration alone
(EWMA, Equation 1) served as a default
nonlearning algorithm against which learning
models were evaluated.

Stochastic Linear Learning Model with
Perseveration (SLLp)

Stochastic linear learning (SLL) models
assume that learning agents maintain a prob-
ability distribution of choices: If a choice is
reinforced, the probability of that choice
increases; if a choice is not reinforced, the
probability of that choice either decreases or
remains constant. This algorithm has been
used often as the backbone of models of
conditioning (Bush & Mosteller, 1951; Re-
scorla & Wagner, 1972), and has also provided
accurate descriptions of human and nonhu-
man primate learning of mixed strategies
(Erev & Roth, 1998; Lee et al., 2004; 2005;
Mookherjee & Sopher, 1994). In the only
report of a MP game between laboratory
animals, however, neither the Nash equilibri-
um nor an SLL model captured the perfor-
mance of pairs of rats (Flood et al., 1983). This
result may have been due to poorly discrimi-
nable rewards and strong biases generated by
visual contact between opponents. Neverthe-
less, the demonstrable operation of SLL
mechanisms in nonhuman learning suggests
that a modified version of SLL may provide a
good account of nonhuman performance in
game environments.

For any given alternative, the SLL model
may be formulated as:

piv1 = P + f(Cumy). (4)



PIGEONS APPROACH NASH EQUILIBRIUM

Table 3

Probability change function in Eq. 4
for choosing heads.

Payoff (n,)
Prior Choice (C) 0 >0
Heads 2 (0 = py) A (1= p)
Tails Jie (1= p)) Jr (0= p)

Equation 4 simply states that a change in
probability of choosing an alternative from
one trial to the next is a function of the last
choice made (C,) and the payoff for that
choice (m;). Table 3 specifies the change
function f (C,n,) evaluated in this paper. The
two-way table assumes that p, is the probability
of choosing heads; an analogous table may be
constructed for choosing tails by flipping the
top and bottom cells. Two free parameters
modulate the impact of a trial on the
probability of choosing an alternative: Rate of
extinction Ag which operates when reinforce-
ment is absent (m, = 0), and rate of learning
Ar, which operates when reinforcement is
present (m, > 0). The left cells of Table 3
indicate that the probability of choosing an
alternative, heads in this case, should decrease
after each trial by a factor of 4 if that choice is
not reinforced, and increases by the same
factor if the opposite choice is not reinforced.
The right cells of Table 3 indicate that the
probability of choosing an alternative should
increase after each trial by a factor of A if that
choice is reinforced, and decrease by the same
factor if the opposite choice is reinforced.

Whereas it may suffice to use a single
parameter across all games to define rate of
extinction Ag, the use of two different positive
payoffs, small and large, implies a potential use
of two free parameters to define rate of
learning Ar. We relied on prior empirical
research to minimize the number of free
parameters—rate of learning Ay was specified
as a function of immediately preceding posi-
tive payoffs (Borgers & Sarin, 1997), using
Killeen’s (1985) value function for food
duration in animals,

Ap=1—¢". (5)
Parameter y is the curvature of the utility
function for food rewards—higher values of y
yield more concave functions.
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The SLL model is completed with the
incorporation of choice perseveration into
Equation 4, forming what will be called SLLp.
Perseveration was incorporated by substituting
p. in Equation 4 and Table 3 with p',,; from
EWMA (Equation 1). Thus, in determining
choice, the model assumes that perseveration
operates first, transforming the just-prior
estimate of choice probability p', = p, into
P’ 111 following EWMA (Equation 1); reinforce-
ment then adds or substracts to the momen-
tum-driven propensity following Equations 4
and 5 and Table 3.

The nesting of EWMA into SLLp yields two
equations that represent the change in prob-
ability of choosing an alternative following
reinforced and nonreinforced trials, respec-
tively,

IfTEt > 0,p;+] =
" (6a)
a G+ (1 —ar)[pe + (1= e )G — pi)],

If T, = O, pt +1 =
(6b)
/11“(1 — C;) + (1 — )»E)[O([‘Ct—}— (1 — OC[‘)pt].

Whereas EWMA has a single free parameter, o,
SLLp model has three free parameters: Persis-
tence (oy; the subscript distinguishes it from
EWMA'’s parameter), concavity of utility func-
tion (y), and rate of extinction (4z). Note that
Equation 6a can be reduced to EWMA by
setting ¥ = 0, and Equation 6b by setting 4, =
0. That is, if choice is insensitive to reinforce-
ment and extinction, only persistence oper-
ates. Equation 6a implies that persistence and
reinforcement determine choice following a
reinforced trial: The first term on the right-
hand side indicates that as «; — 1 (strong
persistence), choice depends more on the just-
prior choice; the second term indicates that as
oy, — 0, choice changes in the direction of the
reinforced choice at a rate determined by the
utility of the reinforcer. Similarly, Equation 6b
implies that extinction and persistence deter-
mine choice following a nonreinforced trial:
The first term on the right-hand side indicates
that as Az — 1 (high sensitivity to nonrein-
forcement), choice alternation is more likely;
the second term indicates that as Ay — 0,
choice is determined more by its own momen-
tum.

To account for stimulus control, the model
assumed separate values of p, for each role.
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When roles changed between ¢and ¢+ 1, p,4
was predicted by the last p’ estimated for the
new role. However, the values of C, and &, used
to predict p,.; were those of the preceding
trial, regardless of role.

The SLLp model was evaluated against
EWMA (Equation 1). As had been done
already with EWMA, SLLp’s free parameters
were estimated by fitting predicted choice
probabilities to actual choices, using the
method of maximum likelihood. The relative
merit of each model was determined by log-
likelihood ratios (LLRs). Log-likelihood ratios
were computed for each pigeon as the log of
the ratio of the likelihood of SLLp over
the likelihood of EWMA (cf. footnote 1).
Parameter estimates and LLRs are shown in
Table 2. According to LLRs, the data were
substantially (¢''! to @°°) more probable given
SLLp than given EWMA. This difference
cannot be accounted for only by the difference
in the number of free parameters (one in
EWMA, three in SLLp). On the basis of the
Akaike Information Criterion (Burnham &
Anderson, 2002), two additional free parame-
ters would cast doubt on inferences based on
LLRs of about 4, but not on 3-digit LLRs.

It should not be suprising that SLLp
predicted data better than EWMA. The large
LLRs indicate that choices in MP are not
driven just by perseveration alone, and that
SLLp captures at least part of the unaccounted
variance by attributing it to an obvious suspect,
reinforcement. This does not mean that
perseveration is unimportant; in fact, the
incorporation of reinforcement effects re-
vealed stronger choice perseveration than
EWMA estimated for most pigeons. Nonethe-
less, to evaluate SLLp’s account of reinforce-
ment in MP it is necessary to compare it
against another dynamic model of choice.

Weighted Reinforcement Matching (WRM)

A well established regularity in choice
behavior is that the proportion of choices of
an alternative matches the proportion of
reinforcement obtained from that alternative
(Herrnstein, 1961); this regularity is known as
the matching law (Herrnstein, 1974). This is a
global aspect of behavior for which local
mechanisms are still uncertain (Lefebvre &
Sanabria, 2008; MacDonall, 1999). Weighted
Reinforcement Matching (WRM) is proposed
here as a local mechanism that, consistent with
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melioration theory (Herrnstein & Vaughan,
1980), assumes that the matching law operates
locally. More specifically, WRM postulates that,
when choosing between alternatives, the pro-
portion of recent payoffs obtained from each
alternative is compared against the proportion
of recent opportunities in which that alterna-
tive was chosen. If the former were larger than
the latter, the alternative would be likely
chosen; if the former were smaller than the
latter, the alternative would not be likely
chosen. This implies a significant contrast with
the low cognitive sophistication of SLLp:
Whereas the mnemonic demands of SLLp
are restricted to the agent’s own behavior (i.e.,
the propensity towards each choice), local
matching also demands separate counts of
rewards obtained from each alternative.

Although choice distribution generally cov-
aries with reward distribution, there are two
well known systematic deviations from strict
matching: Bias and sensitivity to reward size
(Baum, 1974). Bias towards an alternative is
the reward-independent tendency to choose
that alternative; a high/low sensitivity to
reward size means that larger rewards are
chosen more/less than expected from strict
matching (Alsop & Porritt, 2006). For binary
choices, these deviations are accounted for by
the general form of the matching law (Baum,
1974; Davison & McCarthy, 1988),

p _ ﬁA(RA)S (7)
1 Bu(R) + (Re)”
where p, is the long-term probability of
choosing alternative A instead of B, R, is the
cumulative reinforcement obtained from
choosing A divided by the total number of
trials, 4 is bias towards choosing A, and s
is sensitivity to reward size expressed as a
power function®,

The probability p of choosing an alternative
may be dynamically updated by substituting R
with a EWMA of reinforcement of that choice,

R = oymn, G + (1 — OCM)R[. (8)

2Equation 7 is mathematically equivalent to the more
conventional ratio expression

E CA _ ’8 <&> s

> Cp \Rp)’
where the left-hand side of the equation is the ratio of
choices.

(F2)
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According to Equation 8, if a choice is not
reinforced (m, = 0) or not made (C, = 0),
average reinforcement of that choice declines
atarate of 1 — oy, If oy = 0, R, is constant and
equivalent to R4 in Equation 7; values of o,
closer to 1 weigh recent payoffs more heavily
in updating average reinforcement. Parameter
oy may be regarded as the rate of persistence
of memory for past choices and reinforce-
ment—as memory of old items fades, their
weight in the computation of average rein-
forcement is reduced. The WRM model
incorporates this memory into the matching
function of Equation 7, thus involving three
free parameters: memory persistence (o),
sensitivity to reward size (s), and bias toward
choosing heads (Brraps; Brams = 1/ Brraps)-

To implement WRM, Equation 8 was com-
puted for each alternative, on each trial; Ry,
for heads and tails were entered as R4 and Rp,
respectively, in Equation 7. A separate register
of R, was kept for each role such that, if roles
changed between t and ¢ + 1, R,;; depended
on the last R computed for the new role.
However, the values of C, and m, used to
compute R,,; were those of the preceding
trial, regardless of role.

Free parameters were estimated using the
maximum likelihood method. According to
these estimates (shown in Table 2), all pigeons
were relatively insensitive to reward size (s <
1), and most of them were biased toward
choosing heads (fgraps > 1). This account was
more likely than EWMA to yield the observed
data, as shown by LLRs that ranged between
75.3 and 135. These large LLRs preclude the
possibility that the advantage of WRM over
EWMA was due to additional free parameters.

SLLp versus WRM

Despite the superior performance of WRM
relative to EWMA, it did not surpass SLLp in
predicting the obtained data. Log-likelihood
ratios were larger for SLLp than for WRM for
every pigeon. Differences between LLRs,
which evaluate each learning model against
EWMA, are in fact the LLRs between SLLp
and WRM. These differences ranged from 4.5
(pigeon B2) to 130.4 (pigeon A2), favoring
SLLp. The superiority of SLLp over WRM
could not depend on the number of free
parameters because there were three free
parameters for both models. Thus, SLLp
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provided a better account of MP performance
than WRM did.

The superiority of SLLp relative to WRM
suggests that choices probably did not depend
on separate counts of rate of reinforcement
for each alternative action. Instead, SLLp
implies a simpler behavioral machinery, a
“stream’ of choices that carried its own
momentum and that was directed by rein-
forcement. But, could such a simple mecha-
nism yield the global patterns of behavior
depicted in Fig. 47 Would its output be
sensitive to Nash equilibrium in each role?
Would it produce own-payoffs biases? To
answer these questions, we resorted to simula-
tions of SLLp.

Simulation of SLLp

We attempted to reproduce the observed
performance of pigeons by feeding an SLLp
simulator with the best fitting parameters
(Table 2). The simulator was run 1000 times
on the same sequence of games experienced
by the pigeons. Results are shown in Figure 5.
Like the actual pigeons, performance of
simulated pigeons that learned using SLLp
approached the Nash equilibria (note the
separation of the lines in SimBl and SimB2
during Game 2) and were oversensitive to their
own payoffs (note changes in performance
from Game 1 to Game 2 in SimAl and A2, and
from Game 2 to Game 3 in SimB1 and SimB2).

Despite the approximate reproduction of
the pigeons’ performances, SLLp simulations
showed two significant departures from the
empirical data. First, pigeons did not acquire
asymptotic performance as fast as the mean
SLLp simulation performance suggests. Sec-
ond, the asymptotic sequential variance of
choice proportions across experimental ses-
sions was systematically lower than in its
simulated counterpart (the seemingly stable
curves shown in Figure 5 are due to the
averaging of 1000 simulator runs). Both
inconsistencies point in the same direction:
SLLp parameters are mostly dependent on fast
within-session changes in choice, and thus
misrepresent substantially slower between-ses-
sion changes. By assuming that fast changes in
choice carried over from one session to the
next, the simulations yielded steeper acquisi-
tion curves that were less stable at asymptote
than those observed in pigeons.
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Fig. 5. Mean performance of 1000 simulations of SLLp, with parameters extracted from pigeons’ performance. The

simulations reproduce reversals in preference across roles predicted by Nash equilibrium, as well as own-payoff effects.

Notation is as in Figure 4.

Differences in within- and between-session
learning rates are regularly observed in labo-
ratory animals in various experimental prepa-
rations, and are best illustrated by the phe-
nomenon of spontaneous recovery (Bouton,
2002): Animals learn to stop responding when
reinforcement is discontinued, but responding
is likely to recover spontaneously after an
interruption of experimental conditions, such
as the interval between experimental sessions.
Important associative processes appear to
underlie spontaneous recovery (Robbins,
1990). The net result is that, at the beginning
of each experimental session, learning does
not pick up where it left off at the end of the
last session, but is somewhat backtracked.

Choice acquisition by pigeons also appeared
to backtrack at the beginning of each MP
session. This effect is illustrated by the
performance of pigeon B2 in Game 4, while
playing Same (dotted curve in the bottom-right
panel of Figure 4). In Game 4, B2 transitioned
from choosing heads with p = .35 to p = .78.
Backtracking is revealed when p is plotted for

the first and second half of each session, as in
Figure 6. Before transition (first four sessions),
p repeatedly declined between the first and
second half of each session, suggesting a fast
within-session learning process that back-
tracked between sessions. During and after
transition, downward within-session trends in p
became rare; substantial within-session chang-
es in p were typically upward, suggesting a
reversal in the within-session learning process,
often interfered by prior ‘“‘downward” learn-
ing. The reversal of within-session trends is
more clearly depicted in the inset of Figure 6:
Downward trends in p during the first four
sessions (negative change) were followed by a
mixture of upwards (positive) and flat trends
in subsequent sessions. Similar backtracking
was also visible in other pigeons while substan-
tial changes in choice were in progress
(Pigeon Al, Game 4; Pigeon BI, Game 2,
playing Same; Pigeon A2, Game 4, playing
Same).

Within-session changes in choice around
transitions suggest that a more precise account
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Fig. 6. Proportion of heads choices by pigeon B2 in
Game 4 while playing Same, in the first and second half of
each session (open and closed circles, respectively). The
general trend in change of choice over the game is
depicted by a continuous sigmoidal function, y = y, + (@ —
)/ (1+e” =079 Wwhere Y, @ b, and ¢ were fitted to
choice proportions. The inset shows the difference in
choice proportions between the second and first half of
each session.

of multisession game behavior would be
attained if the processes underlying spontane-
ous recovery were incorporated to the SLLp
model. The specifications of this module
could be laid out in future developments of

SLLp.

DISCUSSION

Like humans (Rapoport & Budescu, 1992)
and other primates (Lee et al., 2004), pigeons
can learn to compete efficiently in MP games.
Such efficiency, however, is somewhat abated
by a slight yet consistent tendency to persist in
prior choices and an excessive responsiveness
to their own payoffs. Choice persistence in
pigeons contrasts with over-alternation in
adult humans playing mixed strategy games
(Brown & Rosenthal, 1990). Response persis-
tence, however, is not an isolated phenome-
non: It has been reported in other species
(Lee et al., 2004) and in other experimental
contexts (Baum & Davison, 2004; Killeen,
2003; Reboreda & Kacelnik, 1993; but see
Dember & Fowler, 1958). Moreover, persis-
tence cannot be reduced to the automatic
repetition of a motoric response because, in
the experiment reported here, choices were
separated by intertrial intervals of 10s or
more. This divergence from optimality in the
opposite direction of humans suggests that
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overalternation depends on cognitive idio-
syncrasies of Homo sapiens; perhaps it is a
verbally acquired misrepresentation of ran-
domness, thus absent in preverbal children
and nonhumans. This hypothesis has yet to
be evaluated.

Suboptimal sensitivity to one’s own payoffs
in mixed strategy games has been observed in
human players (Binmore, Swierzbinski, &
Proulx, 2001; Ochs, 1995). Prior to this
experiment, however, the manipulation of
payoffs necessary to evaluate this effect had
not been conducted in nonhuman subjects.
Our results indicate an important invariance
across species that further research should
confirm; it implies that accounts of own-
payoffs effects (Goeree, Holt, & Palfrey,
2003) may be modeling basic behavioral
processes that humans share with other
species.

A stochastic linear learning (SLL) algo-
rithm, which has successfully described human
performance in mixed strategy games (Erev &
Roth, 1998; Mookherjee & Sopher, 1994),
approximated optimal performance and re-
produced own-payoffs effects. With the addi-
tion of a persistence module, this algorithm
(SLLp) described pigeon performance better
than the more sophisticated reward-tracking
WRM model. This result, however, does not
rule out reward tracking in other species, or
other forms of reward tracking different from
dynamic matching. Research in this direction
has been conducted by Lau and Glimcher
(2005) and Corrado, Sugrue, Seung, and
Newsome (2005). Their studies suggest re-
ward-tracking mechanisms that account for
the performance of rhesus monkeys in con-
current schedules of reinforcement without
relying on dynamic matching. Ideally, learning
models should be developed to account for
performance across schedules of reinforce-
ment and, to the extent that it is possible,
across species. This study and those by Lau and
Glimcher and Corrado and colleagues are
formulating some candidate models. The
challenge, now, is to identify common ground
and devise critical tests.

An important implication of SLLp is that it
does not require players to learn anything
about their opponent, but only about their
own outcomes. The approximation of pigeons’
choices to the Nash Equilibrium did not (and
could not) depend on them ‘‘knowing’’ their
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opponent’s payoffs, as it is presumed in game-
theoretical agents. Similarly, the formation of
evolutionarily stable strategies does not de-
pend on a population ‘“‘“knowing’’ the fitness
payoffs of another population (Maynard
Smith, 1974). Whether over trials or over
generations, a rudimentary feedback loop
suffices for the formation of stable stochastic
strategies. Choices in mixed strategy games
thus appear to be susceptible to the often
invoked parallelism between instrumental
learning and natural selection (cf. Skinner,
1981).

Itis possible that sophisticated cognitive and
social processes, such as hypothesis testing and
considerations of fairness, play a role in mixed
strategy game playing, particularly in humans.
To invoke such processes, they must account
for variance that is not accounted for by more
parsimonious learning mechanisms, such as
those described here. Critical tests for the
involvement of complex processes are, thus,
defined in part by how simpler processes
operate in game-theoretical scenarios. Because
these simpler processes are more efficiently
studied using animal models, we hope to see
the field of behavioral game theory extend its
domain into the acquired behavior of nonhu-
man species.
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